使用矢量網絡分析儀VNA完成TDR測試
矢量網絡分析儀與時域反射計(TDR)是射頻器件測試領域使用廣泛的測試儀器;前者通過測量被測器件(DUT)在各頻率上的散射參數,得到DUT的頻率響應;而基于采樣示波器的TDR通過向DUT提供脈沖或階躍激勵,并對反射信號電壓進行采樣分析,得到DUT的時域響應。

圖1-1 采樣示波器TDR原理示意圖
TDR通過時域反射波測量可揭示DUT各位置上的特性阻抗,被廣泛應用于電纜與印刷電路板的故障定位。類似地,對傳輸信號的時域測量,可直觀地展示DUT的時域傳輸特性,對系統噪聲、串擾等干擾因素的分析提供有力幫助。

圖1-2 TDR故障定位原理
現代數字信號系統向著高速率、低功耗方向發展,前者為系統提供更快的數據傳輸、處理能力,而后者通過降低信號電平顯著降低系統功耗。然而這對系統設計與測試工程提出了更高的要求:高比特率的數字信號系統導致信號通路間的時序偏移裕度下降,阻抗失配等原因引發的發射與損耗將引發更嚴重的信號失真,因雜散引入串擾與耦合也將產生更強的噪聲干擾。而信號電平的降低也導致信噪比的進一步惡化。為了實現對上述問題的測試與分析,要求相關測量儀器必須具有更高的測試精度。
由于脈沖與階躍信號中的高頻分量占比較小,傳統TDR在高頻段的測量更易受到噪聲干擾,加之其測試帶寬受制于模擬前端電路頻率特性與內部信號采樣率;采用傳統TDR方案實現DUT高頻段特性測試成本較高。
在采用更低信號電平的數字系統測試中,傳統TDR不得不降低其激勵信號功率,防止損壞DUT;但這將要求測試信號具有更高的信噪比,以防止測試精度下降。
在多傳輸通道時序測試中,為實現傳輸通道時序偏差的精準測量,要求TDR提供精準同步的激勵信號;隨著數字信號的比特率不斷提高,激勵信號的同步要求也愈加難以實現。
為滿足上述測試要求,基于示波器的TDR方案開發設計與生產實現成本顯著增加;而矢量網絡分析儀(VNA)作為射頻頻域測試儀器,通過傅里葉逆變換的基本方法實現對DUT的時域測試功能,可作為傳統TDR方案的替代方案。
1、基于VNA的TDR原理
VNA通過向DUT提供單頻正弦波激勵,測量并計算輸入信號與傳輸(反射)信號的矢量幅度比,以散射參數的形式給出。VNA在進行測量時,激勵信號頻率在某一頻率范圍內上進行掃描,從而獲得DUT在該頻率范圍內的頻率響應。
VNA工作原理
VNA在單頻正弦波激勵下分別對入射波與反射(傳輸)波進行矢量測量,以獲取其功率及相位信息進行進一步計算與分析;因此在VNA測試端口存在用于測量入射波的參考接收機與用于測量反射(傳輸)波的測量接收機,并采用定向耦合器用于分離不同傳輸方向的行波信號。由于接收機總是僅需測量某單一頻率上的信號,VNA通常采用與射頻激勵源進行同步頻率掃描的內部本振源將測試信號混頻至中頻,并在接收機前引入中頻濾波器濾除其他頻率上的干擾信號。
對于多傳輸通道時序測試,VNA通常采用對各單端激勵情形進行分別進行矢量測量,輸入信號的波動在輸出信號與輸入信號矢量比計算中被抵消,規避了激勵信號難以實現精準同步的問題。

圖2-1 VNA硬件框圖
基于VNA的TDR方案的基本思想是對DUT頻率響應進行傅里葉逆變換可得到其單位沖激響應,對沖激響應進行積分可得階躍響應。VNA頻率測試點總是離散的,而直接使用離散傅里葉逆變換來實現時域變換,時域響應的分辨率與頻域測試帶寬、時域響應長度與頻域測試步進頻率分別成反比關系。在測量點數固定的情形下,時域分辨率與頻域分辨率是不可兼得的;為解決這一矛盾,VNA通常采用線性調頻Z變換(Chirp-Z transform)來實現從頻域響應到時域響應的變換,由此獲得任意時間內的時域響應。
此方案的另一問題在于VNA的頻域測試范圍總是有限的,在頻域測試范圍內的測試精度相對穩定,但無法測得DUT的零頻(直流)與超出VNA測試頻帶外的頻率響應。零頻響應在計算時域沖激響應與階躍響應時是不可缺少的參數,故VNA需要通過測試頻帶內的頻率影響來估計零頻響應;為了獲得較好的估計效果且方便進行變換,通常要求頻域測試點的起始頻率等于步進頻率,讓測試頻率位于過零點的直線上。而帶外頻率響應卻難以估計,通常將其視為零;而截斷效應將導致變換所得的時域響應中存在過沖與旁瓣;而盡管傳統TDR模擬前端電路本身存在帶寬限制,但其高頻響應相對較為光滑,并不會產生明顯的截斷效應。
VNA采用對頻域響上應用窗函數的方法抑制截斷效應,但其代價是降低時域分辨率;從在時域上看,窗函數增大了沖激激勵的沖激寬度(階躍激勵的上升時間),可應用于分析不同上升時間的數字信號傳輸性能。
2、兩種TDR方案對比
相較于基于示波器的TDR方案,基于VNA的TDR方案在高速率、低功耗的現代數字系統設計與測試中具有更大優勢。
以上就是使用矢量網絡分析儀VNA完成TDR測試,更多測試方案和技術問題,歡迎登陸安泰測試進行了解。






關注官方微信
